Produkt zum Begriff Datenanalyse:
-
Datenanalyse mit R' Fortgeschrittene Verfahren
Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an.
Preis: 27.99 € | Versand*: 0 € -
Datenanalyse mit Python (McKinney, Wes)
Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 44.90 € | Versand*: 0 € -
Datenanalyse mit R' Beschreiben, Explorieren, Schätzen und Testen
Nach einer kurzen generellen Einführung in R wird ausführlich erläutert, wie Daten eingelesen und bearbeitet werden können. Danach erklärt das Buch Verfahren der deskriptiven und explorativen Statistik. Die Inferenzstatistik wird durch Ausprobieren und Simulationen eingeführt, gefolgt von einer ausführlichen Darstellung der gängigen inferenzstatistischen Verfahren. Den Abschluss machen die explorative Faktorenanalyse und die Clusteranalyse. Alle Verfahren werden den LeserInnen mittels zahlreicher Datensätze zur Verfügung gestellt, und jedes Kapitel demonstriert die Analysen anhand einfacher und komplexer Datenbeispiele aus dem Forschungsalltag. Nicht zu Unrecht ist R inzwischen in der sozialwissenschaftlichen Datenanalyse etabliert und manche neueren Verfahren stehen nur dort zur Verfügung. Die LeserInnen werden über das gesamte Buch hinweg immer wieder ermuntert, die Vielfalt und Flexibilität von R selbst auszuprobieren.
Preis: 29.95 € | Versand*: 0 € -
Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)
Datenanalyse mit R: Fortgeschrittene Verfahren , Dieses Buch erklärt ausgewählte Techniken der fortgeschrittenen Datenanalyse. In 10 eigenständigen Kapiteln werden dazu einführende und komplexe Datenbeispiele in R analysiert und interpretiert. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20220701, Produktform: Kartoniert, Titel der Reihe: Pearson Studium - Psychologie##, Autoren: Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter, Seitenzahl/Blattzahl: 304, Themenüberschrift: COMPUTERS / Mathematical & Statistical Software, Keyword: Datenanalyse Fortgeschrittene; Diagnostik; Methodik; R Programm; Statistik, Fachschema: Analyse / Datenanalyse~Datenanalyse~Psychologie / Forschung, Experimente, Methoden~Erforschung~Forschung~Datenverarbeitung / Anwendungen / Mathematik, Statistik, Fachkategorie: Psychologie~Wahrscheinlichkeitsrechnung und Statistik~Mathematische und statistische Software, Warengruppe: HC/Psychologie/Psychologische Ratgeber, Fachkategorie: Forschungsmethoden, allgemein, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Pearson Studium, Verlag: Pearson Studium, Verlag: Pearson Studium, Länge: 241, Breite: 173, Höhe: 17, Gewicht: 525, Produktform: Kartoniert, Genre: Geisteswissenschaften/Kunst/Musik, Genre: Geisteswissenschaften/Kunst/Musik, Herkunftsland: NIEDERLANDE (NL), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2781061
Preis: 34.95 € | Versand*: 0 €
-
Wie erkenne ich Peer Review Artikel?
Peer-Review-Artikel sind wissenschaftliche Artikel, die vor der Veröffentlichung von unabhängigen Experten überprüft wurden, um deren Qualität und Richtigkeit sicherzustellen. Du kannst Peer-Review-Artikel anhand von Angaben wie "Peer-Reviewed", "Refereed", "Reviewed by experts" oder ähnlichen Formulierungen in der Zeitschrift oder auf der Website erkennen. Zudem sind in der Regel die Namen und Institutionen der Gutachter am Ende des Artikels aufgeführt. Peer-Review-Artikel enthalten auch eine ausführliche Literaturangabe und eine Methode, wie die Studie durchgeführt wurde. Es ist wichtig, auf solche Artikel zurückzugreifen, da sie eine höhere Glaubwürdigkeit und Qualität aufweisen.
-
Was sind die wichtigsten Aspekte der Akkuratesse in Bezug auf wissenschaftliche Forschung, Datenanalyse und Berichterstattung?
Die Akkuratesse in wissenschaftlicher Forschung, Datenanalyse und Berichterstattung ist von entscheidender Bedeutung, um die Zuverlässigkeit und Glaubwürdigkeit der Ergebnisse sicherzustellen. Dies beinhaltet die genaue Erfassung und Dokumentation von Daten, die Verwendung von validen und zuverlässigen Methoden zur Analyse und Interpretation der Daten sowie die transparente und präzise Berichterstattung der Ergebnisse. Fehler oder Ungenauigkeiten können zu falschen Schlussfolgerungen führen und das Vertrauen in die Forschung und die daraus resultierenden Erkenntnisse beeinträchtigen. Daher ist es unerlässlich, dass Wissenschaftler und Forscher stets auf höchste Akkuratesse in ihrer Arbeit achten.
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftlicher Forschung effektiv durchgeführt werden?
Die Validierung von Daten in der Softwareentwicklung kann durch automatisierte Tests, Code-Reviews und die Verwendung von Validierungsframeworks wie JSON Schema oder Joi erfolgen. In der Datenanalyse können Validierungsprozesse wie die Überprüfung auf fehlende Werte, Ausreißer und Inkonsistenzen sowie die Anwendung statistischer Tests zur Überprüfung der Datenqualität eingesetzt werden. In der wissenschaftlichen Forschung ist die Validierung von Daten durch die Anwendung von reproduzierbaren Methoden, die Überprüfung der Datenintegrität und die Verwendung von Peer-Reviews zur Validierung von Ergebnissen möglich. Eine transparente Dokumentation der Validierungsprozesse ist in allen Bereichen entscheidend, um die Nachvollziehbarkeit und Vertrauenswürdigkeit der Daten zu gewährleisten.
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftliche Forschung gewährleistet werden?
Die Validierung von Daten in der Softwareentwicklung kann durch automatisierte Tests und Code-Reviews sichergestellt werden, um sicherzustellen, dass die Daten korrekt verarbeitet und gespeichert werden. In der Datenanalyse können Validierungsprozesse wie die Überprüfung der Datenqualität, die Anwendung von statistischen Tests und die Verwendung von validen Datenquellen dazu beitragen, die Genauigkeit der Analyseergebnisse zu gewährleisten. In der wissenschaftlichen Forschung ist die Validierung von Daten durch die Anwendung von reproduzierbaren Methoden, die Überprüfung der Datenintegrität und die Verwendung von peer-reviewten Publikationen von entscheidender Bedeutung, um die Glaubwürdigkeit der Forschungsergebnisse sicherzustellen. Letztendlich ist die transparente Dokumentation und Nachvollzie
Ähnliche Suchbegriffe für Datenanalyse:
-
Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000
In Sekundenschnelle Lackschichten messen – mit dem Schichtdickenmessgerät von Steinberg Systems kein Problem! Das hochsensible Gerät ermittelt automatisch, wie stark verschiedene Schichten, wie etwa Farbe oder Kunststoffe, auf ferromagnetischen Metallen sind. Die vielen Funktionen und exakten Messergebnisse machen das Gerät zum Muss in jeder Autowerkstatt. Umfangreicher geht’s kaum: Das Lackmessgerät bietet neben verstellbarer Display-Helligkeit und Alarm-Lautstärke viele Funktionen: automatisch rotierende Anzeige und Abschaltung, Analysesoftware mit verschiedenen Darstellungen der Messwerte, verschiedene Modi sowie die Batterie-Warnanzeige. Die gemessenen Werte übertragen Sie per Bluetooth bequem auf den Rechner. Dank spezieller App behalten Sie den Überblick über die Daten. Der Lacktester verfügt zudem über eine integrierte, hochempfindliche Sonde. Diese misst auf ±3 % + 1 μm genau. Vor der Messung justieren Sie das Gerät schnell und einfach mittels Nullpunkt- oder Mehrpunktkalibrierung. Dazu verwenden Sie im besten Fall eine unbeschichtete Probe des Substrates, das Sie messen möchten. Alternativ eignet sich auch eine glatte Nullplatte. Mit dem Lackdicken-Messer prüfen Sie die Dicke nichtmagnetischer Schichten auf verschiedenen Oberflächen, beispielsweise auf Edelstahl, Eisen, Aluminium oder Kupfer. Dazu nutzt das Gerät die Wirbelstromprüfung. Diese ermöglicht Ihnen die zerstörungsfreie Messung mit einem hohen Messbereich von 0 - 2000 μm. Die Ergebnisse lesen Sie bequem auf dem klaren LCD ab.
Preis: 109.00 € | Versand*: 0.00 € -
Review Resort
Preis: 14 € | Versand*: 0.00 € -
PMP Rapid Review
Assess your readiness for the updated PMP Exam—and quickly identify where you need to focus and practice. This practical, streamlined guide walks you through each exam task, providing "need to know" checklists, review questions, tips, and links to further study—all designed to help bolster your preparation. Reinforce your exam prep with a Rapid Review of these tasks: Initiating the project Planning the project Executing the project Monitoring and controlling the project Closing the project This book is an ideal complement to the in-depth training of the Microsoft Press Training Kit and other exam-prep resources for the PMP Exam aligned with the Guide to the Project Management Body of Knowledge (PMBOK Guide), Fifth Edition.
Preis: 11.76 € | Versand*: 0 € -
Datenanalyse mit R' Fortgeschrittene Verfahren
Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an.
Preis: 34.95 € | Versand*: 0 €
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftliche Forschung gewährleistet werden?
Die Validierung von Daten in der Softwareentwicklung kann durch automatisierte Tests und Code-Reviews sichergestellt werden, um sicherzustellen, dass die Daten korrekt verarbeitet und gespeichert werden. In der Datenanalyse ist es wichtig, die Datenquellen zu überprüfen und statistische Methoden zu verwenden, um die Genauigkeit der Ergebnisse zu gewährleisten. In der wissenschaftlichen Forschung ist die Validierung von Daten durch die Reproduzierbarkeit von Experimenten und die Verwendung von Peer-Reviews zur Überprüfung der Ergebnisse entscheidend. Darüber hinaus ist die Dokumentation aller Schritte und Entscheidungen im Datenvalidierungsprozess von entscheidender Bedeutung, um die Transparenz und Nachvollziehbarkeit zu gewährleisten.
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftliche Forschung gewährleistet werden?
Die Validierung von Daten in der Softwareentwicklung kann durch automatisierte Tests und Code-Reviews sichergestellt werden, um sicherzustellen, dass die Daten korrekt verarbeitet werden. In der Datenanalyse können Validierungsprozesse wie die Überprüfung der Datenqualität, die Anwendung von statistischen Tests und die Verwendung von validen Datenquellen eingesetzt werden. In der wissenschaftlichen Forschung ist die Validierung von Daten durch die Anwendung von reproduzierbaren Methoden, die Überprüfung von Datenintegrität und die Verwendung von Peer-Reviews von entscheidender Bedeutung. Darüber hinaus ist die Dokumentation aller Schritte im Validierungsprozess von großer Bedeutung, um die Nachvollziehbarkeit und Transparenz der Datenvalidierung zu gewährleisten.
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftliche Forschung effektiv durchgeführt werden?
Die Validierung von Daten in der Softwareentwicklung kann effektiv durch automatisierte Tests und Code-Reviews erfolgen, um sicherzustellen, dass die Daten korrekt verarbeitet und gespeichert werden. In der Datenanalyse ist es wichtig, die Daten mit verschiedenen statistischen Methoden zu überprüfen und sicherzustellen, dass die Ergebnisse konsistent und reproduzierbar sind. In der wissenschaftlichen Forschung ist die Validierung von Daten durch die Verwendung von Kontrollgruppen, Reproduzierbarkeit von Experimenten und Peer-Reviews entscheidend, um die Zuverlässigkeit der Ergebnisse zu gewährleisten. Darüber hinaus ist es wichtig, die Datenquellen und die Prozesse der Datenerfassung und -verarbeitung transparent zu dokumentieren, um die Validierung zu erleichtern.
-
Wie kann die Validierung von Daten in den Bereichen Softwareentwicklung, Datenanalyse und wissenschaftliche Forschung effektiv durchgeführt werden?
Die Validierung von Daten in der Softwareentwicklung kann effektiv durch automatisierte Tests und Code-Reviews erfolgen, um sicherzustellen, dass die Daten korrekt verarbeitet und gespeichert werden. In der Datenanalyse können Validierungsprozesse wie die Überprüfung der Datenqualität, die Anwendung von statistischen Tests und die Verwendung von Validierungswerkzeugen eingesetzt werden, um die Genauigkeit und Zuverlässigkeit der Ergebnisse zu gewährleisten. In der wissenschaftlichen Forschung ist es wichtig, die Validierung von Daten durch die Reproduzierbarkeit von Experimenten, die Verwendung von Kontrollgruppen und die Überprüfung der Datenintegrität zu gewährleisten, um die Glaubwürdigkeit der Forschungsergebnisse sicherzustellen. Letztendlich ist eine klare Dokumentation der Validier
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.